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1 Problem

In a temporal analysis for pulsar studies in the high-energy astrophysics, it
is commonly requested to compute a pulse phase, a pulse frequency, and
time derivatives of pulse frequency at a time of interest, such as a photon
arrival time, in order to precisely follow rotational motions of a pulsar whose
rotation period varies in time. When a temporal variation of pulse period
is well-represented by a relatively simple function of time, those values can
be directly computed with elementary functions. In this article, explicit
functional forms of a pulse phase, a pulse frequency, and time derivatives of
pulse frequency at an arbitrary time are presented for cases where a pulse
period is represented by a second-order polynomial function of time.

Let p(t) be a pulse period at time t, f(t) a pulse frequency at the time,
fn(t) the n-th order time derivative of pulse frequency at the time, and φ(t)
a pulse phase at the time, then in general,

f(t) =
1

p(t)
(1)

fn(t) =
dnf(t)

dtn
(2)

=
dn

dtn

(

1

p(t)

)

(3)

φ(t) = φ0 +
∫ t

t0
f(s)ds (4)

= φ0 +
∫ t

t0

ds

p(s)
, (5)
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where t0 is an arbitrary reference time, and φ0 is a pulse phase at time t0.
Since p(t) is a second-order polynomial function of time, it can be parame-
terized as

p(t) = p0 + p1(t − t0) +
p2

2
(t − t0)

2. (6)

The following sections show the explicit expressions of f(t), fn(t), and φ0(t)
with the time t and the period parameters p0, p1, and p2.

2 Pulse frequency

Combining Eqs. 1 and 6, one obtains

f(t) =
1

p0 + p1(t − t0) + p2

2
(t − t0)2

. (7)

3 Time derivatives of pulse frequency

Using the proposition in Section A.1, one obtains

fn(t) =
[n/2]
∑

k=0

Cn,k (n − k)!

(

− 1

q0

)n−k
q1

n−2k p2
k

q0
(8)

for n > 0, where Cn,k are defined by Eqs. 29, 30, and 31, and

q0 = p0 + p1(t − t0) +
p2

2
(t − t0)

2 (9)

q1 = p1 + p2(t − t0). (10)

4 Pulse phase

Combining Eqs. 5 and 6, one obtains

φ(t) = φ0 +
∫ t

t0

ds

p0 + p1(s − t0) + p2

2
(s − t0)2

(11)

= φ0 +
∫ t−t0

0

dx
p2

2
x2 + p1x + p0

(12)

by substituting s with x = s − t0. Letting a = p2

2
, b = p1, and c = p0 in the

formulas in Section B gives explicit functional forms of φ(t) as follows.
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1. For p0 6= 0 and p1 = p2 = 0,

φ(t) = φ0 +
t − t0

p0
. (13)

2. For p1 6= 0 and p2 = 0,

φ(t) = φ0 +
1

p1
log

(

p1(t − t0)

p0
+ 1

)

(14)

under the condition

p0{p0 + p1(t − t0)} > 0. (15)

3. For p2 6= 0 and 2p0p2 > p1
2,

φ(t) = φ0 +
2√

2p0p2 − p1
2
(arctan u1 − arctanu0). (16)

where u0 and u1 are defined by

u0 ≡ p1√
2p0p2 − p1

2
(17)

u1 ≡ p1 + p2(t − t0)√
2p0p2 − p1

2
. (18)

If both of u0 and u1 are either very large or very small, use the following
formula instead, in order to minimize a loss of significant digits. See
Section B.3 for details.

φ(t) = φ0 +
2√

2p0p2 − p1
2

arctan
(t − t0)

√
2p0p2 − p1

2

2p0 + p1(t − t0)
. (19)

4. For p2 6= 0 and 2p0p2 = p1
2,

φ(t) = φ0 +
2p2(t − t0)

p1{p1 + p2(t − t0)}
. (20)

under the condition

p1{p1 + p2(t − t0)} > 0. (21)
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5. For p2 6= 0 and 2p0p2 < p1
2,

φ(t) = φ0 +
1√

p1
2 − 2p0p2

log

∣

∣

∣

∣

∣

2p0 + (p1 +
√

p1
2 − 2p0p2)(t − t0)

2p0 + (p1 −
√

p1
2 − 2p0p2)(t − t0)

∣

∣

∣

∣

∣

.

(22)
under the condition

x+{x+ − (t − t0)} > 0 and x−{x− − (t − t0)} > 0 (23)

where x± is defined by

x± ≡ −p1 ±
√

p1
2 − 2p0p2

p2
. (24)

A Derivatives of a composite function with a

second-order polynomial

In this section, a proposition1 provides an analytic expression of the derivative
of an arbitrary order of a composite of two functions, one of which is a second-
order polynomial, and another an arbitrary function. Several examples of the
proposition are also shown. A proof of the proposition is attached at the end
of this section.

A.1 Proposition

Let f(y) be a differentiable function, g(x) a second-order polynomial (i.e.,
g(x) = ax2 + bx+ c), and the composite of them F (x) = f(g(x)). For any
integer n > 0, using the following notation,

Fn ≡ dnF (x)

dxn
(25)

fn ≡
[

dnf(y)

dyn

]

y=g(x)

(26)

gn ≡ dng(x)

dxn
(27)

1It is a special case of Fiaà di Bruno’s formula.
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the n-th order derivative of F (x) is given by

Fn =
[n/2]
∑

k=0

Cn,k fn−k g1
n−2k g2

k, (28)

where [x] is the largest integer less than or equal to a real number x (the
floor function), and Cm,l integer coefficients defined for integers m and l that
satisfy m > 0 and [m/2] ≥ l ≥ 0. The coefficients Cm,l for m > 0 and
[m/2] ≥ l > 0 are defined by

Cm,l ≡ Cm−1,l + (m − 2l + 1)Cm−1,l−1 (29)

C2l−1,l ≡ 0 (30)

and those for m > 0 and l = 0 by

Cm,0 ≡ 1. (31)

A.2 Example

Using Eqs. 29, 30, and 31, all the coefficients Cm,l for 0 < m ≤ 6 are obtained
as the following.

For m = 1, C1,0 = 1

C1,1 = 0

For m = 2, C2,0 = 1

C2,1 = C1,1 + C1,0 = 1

For m = 3, C3,0 = 1

C3,1 = C2,1 + 2C2,0 = 3

C3,2 = 0

For m = 4, C4,0 = 1

C4,1 = C3,1 + 3C3,0 = 6

C4,2 = C3,2 + C3,1 = 3

For m = 5, C5,0 = 1

C5,1 = C4,1 + 4C4,0 = 10

C5,2 = C4,2 + 2C4,1 = 15

C5,3 = 0
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For m = 6, C6,0 = 1

C6,1 = C5,1 + 5C5,0 = 15

C6,2 = C5,2 + 3C5,1 = 45

C6,3 = C5,3 + C5,2 = 15

Using those coefficients obtained above, the derivatives of F (x) are obtained
up to the 6th order as the following.

F1(x) = f1g1

F2(x) = f2g1
2 + f1g2

F3(x) = f3g1
3 + 3f2g1g2

F4(x) = f4g1
4 + 6f3g1

2g2 + 3f2g2
2

F5(x) = f5g1
5 + 10f4g1

3g2 + 15f3g1g2
2

F6(x) = f6g1
6 + 15f5g1

4g2 + 45f4g1
2g2

2 + 15f3g2
3

A.3 Proof

The proposition is proved below by mathematical induction. Let Gn(x) be
the right-hand side of Eq. 28, i.e.,

Gn =
[n/2]
∑

k=0

Cn,k fn−k g1
n−2k g2

k (32)

For n = 1, F1(x) is derived by the chain rule as

F1(x) =
df(g(x))

dx
(33)

=

[

df(y)

dy

]

y=g(x)

· dg(x)

dx
(34)

= f1g1. (35)

Combined with eqs. 29, 30, and 31, the definition of Gn(x) gives G1(x) = f1g1.
Therefore, F1(x) = G1(x). Assume Fn(x) = Gn(x) is true for an integer
n ≥ 1. Then,

Fn+1(x) =
dFn(x)

dx
(36)
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=
dGn(x)

dx
(37)

=
d

dx

[n/2]
∑

k=0

Cn,k fn−k g1
n−2k g2

k, (38)

Since g(x) is a second-order polynomial of x,

dg2

dx
= 0. (39)

Also, the chain rule gives

dfn−k

dx
= fn−k+1 g1. (40)

Hence,

Fn+1(x) =
[n/2]
∑

k=0

Cn,k

{

fn−k+1 g1
n−2k+1

+ (n − 2k)fn−k g1
n−2k−1 g2

}

g2
k (41)

= fn+1 g1
n+1 +

[n/2]
∑

k=1

Cn,k fn−k+1 g1
n−2k+1 g2

k

+
[n/2]−1
∑

k=0

(n − 2k)Cn,k fn−k g1
n−2k−1 g2

k+1 + Rn (42)

where Rn is defined by

Rn ≡ Cn,[n/2] fn−[n/2] (n − 2[n/2])g1
n−2[n/2]−1 g2

[n/2]+1. (43)

With simple manipulations, one derives

Fn+1(x) = fn+1 g1
n+1 +

[n/2]
∑

k=1

Cn,k fn−k+1 g1
n−2k+1 g2

k

+
[n/2]
∑

k=1

(n − 2k + 2)Cn,k−1 fn−k+1 g1
n−2k+1 g2

k + Rn (44)

= fn+1 g1
n+1

+
[n/2]
∑

k=1

{Cn,k + (n − 2k + 2)Cn,k−1} fn−k+1 g1
n−2k+1 g2

k

+Rn (45)
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From Eq. 29, one obtains

Cn,k + (n − 2k + 2)Cn,k−1 = Cn+1,k, (46)

therefore,

Fn+1(x) = fn+1 g1
n+1

+
[n/2]
∑

k=1

Cn+1,k fn−k+1 g1
n−2k+1 g2

k

+Rn (47)

=
[n/2]
∑

k=0

Cn+1,k fn−k+1 g1
n−2k+1 g2

k + Rn (48)

For an even n, [n/2] = n/2, hence Rn = 0. Also, [n/2] = [(n + 1)/2].
Therefore, one obtains

Fn+1(x) =
[(n+1)/2]
∑

k=0

Cn+1,k fn−k+1 g1
n−2k+1 g2

k (49)

For an odd n, [n/2] = (n− 1)/2 and [n/2] = [(n + 1)/2]− 1. Combined with
Eqs. 29 and 30, one obtains

Cn+1,[(n+1)/2] = Cn,[(n+1)/2] + Cn,[(n+1)/2]−1 (50)

= Cn,(n+1)/2 + Cn,[(n+1)/2]−1 (51)

= Cn,[(n+1)/2]−1. (52)

Therefore,

Rn = Cn,[(n+1)/2]−1 fn−[(n+1)/2]+1 g1
n−2[(n+1)/2]+1 g2

[(n+1)/2] (53)

= Cn+1,[(n+1)/2] fn−[(n+1)/2]+1 g1
n−2[(n+1)/2]+1 g2

[(n+1)/2] (54)

=
[

Cn+1,k fn−k+1 g1
n−2k+1 g2

k
]

k=[(n+1)/2]
, (55)

and finally,

Fn+1(x) =
[(n+1)/2]−1

∑

k=0

Cn+1,k fn−k+1 g1
n−2k+1 g2

k

+
[

Cn+1,k fn−k+1 g1
n−2k+1 g2

k
]

k=[(n+1)/2]
(56)

=
[(n+1)/2]
∑

k=0

Cn+1,k fn−k+1 g1
n−2k+1 g2

k (57)

Eqs. 49 and 57 show Eq. 28 is true for n + 1 for all cases. Q.E.D.
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B Definite integral of the reciprocal of a second-

order polynomial function

In this section, explicit functional forms of the definite integral of the re-
ciprocal of a second-order polynomial is derived. Let I(x1) be the definite
integral of interest defined by

I(x1) ≡
∫ x1

0

dx

ax2 + bx + c
. (58)

Antiderivatives for the integrand are elementary functions, but the their func-
tional forms depend on the parameter values. Below each of the cases is
described separately.

B.1 Case for a = b = 0 and c 6= 0

In this case, the antiderivatives are given by
∫ dx

c
=

x

c
. (59)

Therefore, one obtains

I(x1) =
x1

c
. (60)

B.2 Case for a = 0 and b 6= 0

In this case, the antiderivatives are given by
∫

dx

bx + c
=

1

b
log |bx + c|. (61)

Therefore, one obtains

I(x1) =
1

b
[log |bx + c|]x1

0 (62)

=
1

b
log

∣

∣

∣

∣

∣

bx1

c
+ 1

∣

∣

∣

∣

∣

. (63)

Note that Eq. 67 holds only if bx + c 6= 0 at all x in the range of integration.
Since there is only one value of x which satisfies bx + c = 0, the condition
can be expressed by

x∗(x∗ − x1) > 0 (64)
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where x∗ is the solution of the equation, namely,

x∗ ≡ −c

b
. (65)

Since b 6= 0, the condition is equivalent to

c(bx1 + c) > 0. (66)

Since the argument of the logarithmic function in Eq. 63 is always positive
under the condition, Eq. 63 can be transformed to

I(x1) =
1

b
log

(

bx1

c
+ 1

)

. (67)

B.3 Case for a 6= 0 and 4ac > b2

In this case, the antiderivatives are given by

∫

dx

ax2 + bx + c
=

2√
4ac − b2

arctan
2ax + b√
4ac − b2

. (68)

Therefore, one obtains

I(x1) =
2√

4ac − b2

[

arctan
2ax + b√
4ac − b2

]x1

0

(69)

=
2(θ1 − θ0)√

4ac − b2
(70)

where θ0 and θ1 are defined by

θ0 ≡ arctan
b√

4ac − b2
(71)

θ1 ≡ arctan
2ax1 + b√
4ac − b2

. (72)

A special attention needs to be paid in computing the right-hand side of
Eq. 70 in a computer system for cases where both of | tan θ0| and | tan θ1| are
large. For |x| � 1, | arctanx| > 1 and x2 + 1 � |x|, hence,

∣

∣

∣

∣

∣

d

dx
arctanx

∣

∣

∣

∣

∣

=
1

x2 + 1
�
∣

∣

∣

∣

arctanx

x

∣

∣

∣

∣

. (73)
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This means, a fractional change in a value of the arctangent function is much
smaller than that in an argument value when the argument value is large. As
a result, a direct computation of (θ1 − θ0) causes a significant loss of digits.
To mitigate such a loss of digits, one can further transform Eq. 70.

From the sum formulas the trigonometric functions, one obtains

tan(θ1 − θ0) =
tan θ1 − tan θ0

1 + tan θ1 tan θ0

(74)

=
x1

√
4ac − b2

bx1 + 2c
. (75)

For tan θ0 � 1 and tan θ1 � 1, θ0 > π
4

and θ1 > π
4
. Also, by definition,

θ0 < π
2

and θ1 < π
2
. Therefore, one obtains −π

4
< θ1 − θ0 < π

4
, then

θ1 − θ0 = arctan
x1

√
4ac − b2

bx1 + 2c
. (76)

Similarly, for tan θ0 � −1 and tan θ1 � −1, it is trivial that −π
4

< θ1 − θ0 <
π
4
, then Eq. 76 holds. Combining Eqs. 70 and 76, one obtains

I(x1) =
2√

4ac − b2
arctan

x1

√
4ac − b2

bx1 + 2c
. (77)

for cases with tan θ0 � 1 and tan θ1 � 1 and those with tan θ0 � −1 and
tan θ1 � −1.

With Eq. 77, one can avoid a loss of significant digits in a direct compu-
tation of (θ1 − θ0) in Eq. 70. Eq. 77, on the other hand, is not applicable
to cases with |θ1 − θ0| ≥ π

2
because values of the arctangent function range

only between −π
2

and π
2
. In other words, one can benefit from using Eq. 77

to compute I(x1) if both of tan θ0 and tan θ1 are either very large or very
small, and Eq. 70 covers all other cases.

B.4 Case for a 6= 0 and 4ac = b2

In this case, the antiderivatives are given by

∫

dx

ax2 + bx + c
= − 2

2ax + b
. (78)
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Therefore, one obtains

I(x1) =
[

− 2

2ax + b

]x1

0
(79)

=
4ax1

b(2ax1 + b)
. (80)

Note that Eq. 80 holds only if ax2 + bx + c 6= 0 at all x in the range of
integration. Since there is only one value of x which satisfies ax2 +bx+c = 0,
the condition can be expressed by

x∗(x∗ − x1) > 0 (81)

where x∗ is the solution of the equation, namely,

x∗ ≡ − b

2a
. (82)

Since a 6= 0, the condition is equivalent to

b(2ax1 + b) > 0. (83)

B.5 Case for a 6= 0 and 4ac < b2

In this case, the antiderivatives are given by

∫ dx

ax2 + bx + c
=

1√
b2 − 4ac

log

∣

∣

∣

∣

∣

2ax + b −
√

b2 − 4ac

2ax + b +
√

b2 − 4ac

∣

∣

∣

∣

∣

(84)

Therefore, one obtains

I(x1) =
1√

b2 − 4ac

[

log

∣

∣

∣

∣

∣

2ax + b −
√

b2 − 4ac

2ax + b +
√

b2 − 4ac

∣

∣

∣

∣

∣

]x1

0

(85)

=
1√

b2 − 4ac
log

∣

∣

∣

∣

∣

2ax1 + b −
√

b2 − 4ac

2ax1 + b +
√

b2 − 4ac
· b +

√
b2 − 4ac

b −
√

b2 − 4ac

∣

∣

∣

∣

∣

(86)

=
1√

b2 − 4ac
log

∣

∣

∣

∣

∣

x1(b +
√

b2 − 4ac) + 2c

x1(b −
√

b2 − 4ac) + 2c

∣

∣

∣

∣

∣

(87)

Note that Eq. 87 holds only if ax2 + bx + c 6= 0 at all x in the range of
integration. Since there are two values of x which satisfy ax2 + bx + c = 0,
the condition can be expressed by

x+(x+ − x1) > 0 and x−(x− − x1) > 0 (88)
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where x± are the solutions of the equation, namely,

x± ≡ −b ±
√

b2 − 4ac

2a
. (89)
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